{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 01 Constructing a scatter plot"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%html\n",
""
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from pandas import Series, DataFrame\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from scipy import stats"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[khanacademy](https://www.khanacademy.org/math/ap-statistics/bivariate-data-ap/scatterplots-correlation/v/constructing-scatter-plot?modal=1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data = {\n",
" 'Class': ['English', 'Math', 'History', 'CS', 'Arts', 'Biology', 'Physics', 'Chemistry', 'Spanish'],\n",
" 'Period': [1,6,2,4,4,1,3,1,3],\n",
" 'Score': [93,87,70,62,86,73,73,80,96]\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df = DataFrame(data).set_index('Class')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Period | \n",
" Score | \n",
"
\n",
" \n",
" Class | \n",
" | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" English | \n",
" 1 | \n",
" 93 | \n",
"
\n",
" \n",
" Math | \n",
" 6 | \n",
" 87 | \n",
"
\n",
" \n",
" History | \n",
" 2 | \n",
" 70 | \n",
"
\n",
" \n",
" CS | \n",
" 4 | \n",
" 62 | \n",
"
\n",
" \n",
" Arts | \n",
" 4 | \n",
" 86 | \n",
"
\n",
" \n",
" Biology | \n",
" 1 | \n",
" 73 | \n",
"
\n",
" \n",
" Physics | \n",
" 3 | \n",
" 73 | \n",
"
\n",
" \n",
" Chemistry | \n",
" 1 | \n",
" 80 | \n",
"
\n",
" \n",
" Spanish | \n",
" 3 | \n",
" 96 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Period Score\n",
"Class \n",
"English 1 93\n",
"Math 6 87\n",
"History 2 70\n",
"CS 4 62\n",
"Arts 4 86\n",
"Biology 1 73\n",
"Physics 3 73\n",
"Chemistry 1 80\n",
"Spanish 3 96"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVBUlEQVR4nO3df4xdZ33n8fdn4sEex6EM44ENNjRAIKVCXpMO2VJvU0Sgu7DIJDWIoIIgooSu+NmVNga0KnS1lYgVSrvaXYpJQNmWDZAMKGhhs2QDBCot2U6C4xgCRC0hGeMmg3EgA/ZknPvdP+4N2M7EHps5czP3vF/S6M597vnxPbr2x4+fc85zUlVIktpjqN8FSJKWl8EvSS1j8EtSyxj8ktQyBr8ktcyqfhewGOvXr6+zzjqr32VI0opy6623/qiqxo9tXxHBf9ZZZzE1NdXvMiRpRUnyg4XaHeqRpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfi14u2fneP2ex9g/+xcv0uRVoQVcTmn9Fiu37WX7ZO7GR4aYr7TYce2TWzdvKHfZUmPa/b4tWLtn51j++RuDs13eHDuMIfmO1w2uduev3QCBr9WrOkDBxkeOvqP8PDQENMHDvapImllMPi1Ym0cHWG+0zmqbb7TYePoSJ8qklYGg18r1ti61ezYtok1w0OcsXoVa4aH2LFtE2PrVve7NOlxrdGTu0neBbwFCPCxqvrLJB/otc30FntfVX2xyTo0uLZu3sCWs9czfeAgG0dHDH1pERoL/iTPpxvw5wEPATck+ULv4w9X1RVN7VvtMrZutYEvnYQme/zPA75RVT8HSHIzcFGD+5MkLUKTY/x7gPOTjCVZC7wCeHrvs7cn2Z3k40lGF1o5yaVJppJMzczMLLSIJOkUNBb8VXUncDlwI3ADcDtwGPgI8GxgM7AP+NBjrL+zqiaqamJ8/FHPEZAknaJGr+qpqquq6tyqOh/4MXBXVd1XVQ9XVQf4GN1zAJKkZdJo8Cd5Su/1GcAfANckOfOIRS6iOyQkSVomTc/VM5lkDJgH3lZVB5L8TZLNQAF3A29tuAZJ0hEaDf6q+t0F2t7Q5D4lScfnnbuS1DIGvyS1jMEvSS0z8MHv05kk6WgD/QQun84kSY82sD1+n84kSQsb2OD36UyStLCBDX6fziRJCxvY4PfpTJK0sIE+uevTmSTp0QY6+MGnM0nSsQZ2qEeStDCDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqmUaDP8m7kuxJ8q0k7+61PTnJjUnu6r2ONlmDJOlojQV/kucDbwHOA/458MokzwHeA9xUVc8Bbuq9lyQtkyZ7/M8DvlFVP6+qw8DNwEXAq4Cre8tcDVzYYA2SpGM0Gfx7gPOTjCVZC7wCeDrw1KraB9B7fcpCKye5NMlUkqmZmZkGy5Skdmks+KvqTuBy4EbgBuB24PBJrL+zqiaqamJ8fLyhKiWpfRo9uVtVV1XVuVV1PvBj4C7gviRnAvRe72+yBknS0Zq+qucpvddnAH8AXAN8Hnhjb5E3Atc3WYMk6WhNP4hlMskYMA+8raoOJPkg8JkkbwbuAV7TcA2SpCM0GvxV9bsLtO0HLmhyv5Kkx+adu5LUMga/JLWMwS9JLWPwS1LLGPyS1DIGvyS1jMEvSS1j8EtSyxj8ktQyBr8kPQ7tn53j9nsfYP/s3JJvu+m5eiRJJ+n6XXvZPrmb4aEh5jsddmzbxNbNG5Zs+/b4JelxZP/sHNsnd3NovsODc4c5NN/hssndS9rzN/gl6XFk+sBBhoeOjubhoSGmDxxcsn0Y/JL0OLJxdIT5TueotvlOh42jI0u2D4NfWoGaPPGn/hpbt5od2zaxZniIM1avYs3wEDu2bWJs3eol24cnd6UVpukTf+q/rZs3sOXs9UwfOMjG0ZElDX0w+KUV5cgTf4foDgdcNrmbLWevX/JwUH+NrVvd2HfqUI+0gizHiT8NPoNfWkGW48SfBp/BL60gy3HiT4Ov0TH+JH8C/BFQwB3AJcBfA78H/KS32JuqaleTdUiDpOkTfxp8jQV/kg3AO4HfrKqDST4DXNz7+N9X1XVN7VsadE2e+NPga3qoZxUwkmQVsBb4YcP7kySdQGPBX1V7gSuAe4B9wE+q6ku9j/88ye4kH06yYLclyaVJppJMzczMNFWmJLVOY8GfZBR4FfBM4GnA6UleD7wX+A3ghcCTge0LrV9VO6tqoqomxsfHmypTklqnyaGelwLfr6qZqpoHPgv8TlXtq6454BPAeQ3WIEk6RpPBfw/w20nWJglwAXBnkjMBem0XAnsarEGSdIzGruqpqluSXAfcBhwGvgnsBP5XknEgwC7gj5uqQZL0aI1ex19V7wfef0zzS5rcpyTp+LxzV5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklrG4JekljH4JallDH5JahmDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWWXTwJ/mXSS7p/T6e5JnNlSVJasqigj/J+4HtwHt7TcPA3zZVlCSpOYvt8V8EbAV+BlBVPwTOONFKSf4kybeS7ElyTZI1SZ6Z5JYkdyX5dJInnHr5J7Z/do7b732A/bNzTe5GklaMxQb/Q1VVQAEkOf1EKyTZALwTmKiq5wOnARcDlwMfrqrnAAeAN59K4Ytx/a69bLn8y7z+ylvYcvmX+fyuvU3tSpJWjMUG/2eSfBR4UpK3AP8H+Ngi1lsFjCRZBawF9gEvAa7rfX41cOHJlbw4+2fn2D65m0PzHR6cO8yh+Q6XTe625y+p9VYtZqGquiLJy4CfAucAf1pVN55gnb1JrgDuAQ4CXwJuBR6oqsO9xaaBDQutn+RS4FKAZzzjGYsp8yjTBw4yPDTEITq/aBseGmL6wEHG1q0+6e1J0qA4YfAnOQ3431X1UuC4YX/MeqPAq4BnAg8A1wIvX2DRWmj9qtoJ7ASYmJhYcJnj2Tg6wnync1TbfKfDxtGRk92UJA2UEw71VNXDwM+T/NpJbvulwPeraqaq5oHPAr9Dd7jokX9wNgI/PMntLsrYutXs2LaJNcNDnLF6FWuGh9ixbZO9fUmtt6ihHuAQcEeSG+ld2QNQVe88zjr3AL+dZC3doZ4LgCngK8CrgU8BbwSuP4W6F2Xr5g1sOXs90wcOsnF0xNCXJBYf/F/o/SxaVd2S5DrgNuAw8E26QzdfAD6V5D/12q46me2erLF1qw18STpCuldpLmLB7vX2z+29/W5v+GZZTExM1NTU1HLtTpIGQpJbq2ri2PZF9fiTvJjupZd3AwGenuSNVfW1pSxSktS8xQ71fAj4/ar6LkCS5wLXAL/VVGGSpGYs9gau4UdCH6Cqvkd3vh5J0gqz2B7/VJKrgL/pvf9DujdjSZJWmMUG/78F3kZ37p0AXwP+W1NFSZKas9jgXwX8VVX9Bfzibl6vkZSkFWixY/w3AUfOdTBCd6I2SdIKs9jgX1NVs4+86f2+tpmSJElNWmzw/yzJuY+8STJBdxoGSdIKs9gx/ncD1yb5Id3ZNJ8GvLaxqiRJjTlujz/JC5P8s6r6e+A3gE/TnXfnBuD7y1CfJGmJnWio56PAQ73fXwS8D/ivdB+ZuLPBuiRJDTnRUM9pVfXj3u+vBXZW1SQwmWRXs6VJkppwoh7/aUc8NOUC4MtHfLbY8wOSpMeRE4X3NcDNSX5E9yqerwMkORv4ScO1SZIacNzgr6o/T3ITcCbwpfrl5P1DwDuaLk6StPROOFxTVd9YoO17zZQjSWraYm/gkiQNCINfklrG4Jeklmnskswk59C90/cRzwL+FHgS8BZgptf+vqr6YlN1SJKO1ljw9x7VuBl+MX//XuBzwCXAh6vqiqb2LUl6bMs11HMB8A9V9YNl2p8k6TEsV/BfTPdmsEe8PcnuJB9PMrrQCkkuTTKVZGpmZmahRSRJp6Dx4E/yBGArcG2v6SPAs+kOA+0DPrTQelW1s6omqmpifHy86TIlqTWWo8f/cuC2qroPoKruq6qHq6oDfAw4bxlqkCT1LEfwv44jhnmSnHnEZxcBe5ahBklST6MzbCZZC7wMeOsRzTuSbKb7JK+7j/lMktSwRoO/qn4OjB3T9oYm9ylJOj7v3JWkljH4JallDH5JapmBD/79s3Pcfu8D7J+d63cpaojfsXRyBvq5udfv2sv2yd0MDw0x3+mwY9smtm7e0O+ytIT8jqWTN7A9/v2zc2yf3M2h+Q4Pzh3m0HyHyyZ32yscIH7H0qkZ2OCfPnCQ4aGjD294aIjpAwf7VJGWmt+xdGoGNvg3jo4w3+kc1Tbf6bBxdKRPFWmp+R1Lp2Zgg39s3Wp2bNvEmuEhzli9ijXDQ+zYtomxdav7XZqWiN+xdGpSVf2u4YQmJiZqamrqlNbdPzvH9IGDbBwdMRAGlN+xtLAkt1bVxLHtA31VD3R7hYbBYPM7lk7OwA71SJIWZvBLUssY/JLUMga/JLWMwS9JLWPwS1LLGPyS1DIGvyS1jMEvSS3TWPAnOSfJriN+fprk3UmenOTGJHf1XkebqqGNfCiJpBNpbMqGqvousBkgyWnAXuBzwHuAm6rqg0ne03u/vak62sSHkkhajOUa6rkA+Ieq+gHwKuDqXvvVwIXLVMNA86EkkhZruYL/YuCa3u9Prap9AL3Xpyy0QpJLk0wlmZqZmVmmMlcuH0oiabEaD/4kTwC2AteezHpVtbOqJqpqYnx8vJniBogPJZG0WMvR4385cFtV3dd7f1+SMwF6r/cvQw0Dz4eSSFqs5ZiP/3X8cpgH4PPAG4EP9l6vX4YaWmHr5g1sOXu9DyWRdFyNBn+StcDLgLce0fxB4DNJ3gzcA7ymyRraxoeSSDqRRoO/qn4OjB3Ttp/uVT6SpD7wzl1JahmDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklrG4JekljH4JallDH5JahmDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUaDf4kT0pyXZLvJLkzyYuSfCDJ3iS7ej+vaLIGSdLRVjW8/b8CbqiqVyd5ArAW+FfAh6vqiob3LUlaQGPBn+SJwPnAmwCq6iHgoSRN7VKStAhNDvU8C5gBPpHkm0muTHJ677O3J9md5ONJRhdaOcmlSaaSTM3MzDRYpiS1S5PBvwo4F/hIVb0A+BnwHuAjwLOBzcA+4EMLrVxVO6tqoqomxsfHGyxTktqlyeCfBqar6pbe++uAc6vqvqp6uKo6wMeA8xqsQZJ0jMaCv6r+Cbg3yTm9pguAbyc584jFLgL2NFWDJOnRmr6q5x3AJ3tX9PwjcAnwn5NsBgq4G3hrwzVIko7QaPBX1S5g4pjmNzS5T0nS8XnnriS1jMEvSS1j8EtSyxj8ktQyBr8ktYzBL0ktY/BLUssY/JLUMga/JLWMwS+tQPtn57j93gfYPzvX71K0AjU9V4+kJXb9rr1sn9zN8NAQ850OO7ZtYuvmDf0uSyuIPX5pBdk/O8f2yd0cmu/w4NxhDs13uGxytz1/nRSDX1pBpg8cZHjo6L+2w0NDTB842KeKtBIZ/NIKsnF0hPlO56i2+U6HjaMjfapIK5HBL60gY+tWs2PbJtYMD3HG6lWsGR5ix7ZNjK1b3e/StIJ4cldaYbZu3sCWs9czfeAgG0dHDH2dNINfWoHG1q028HXKHOqRpJYx+CWpZQx+SWoZg1+SWsbgl6SWSVX1u4YTSjID/OBX2MR64EdLVM5K0LbjBY+5Ddp2vPCrH/OvV9X4sY0rIvh/VUmmqmqi33Usl7YdL3jMbdC244XmjtmhHklqGYNfklqmLcG/s98FLLO2HS94zG3QtuOFho65FWP8kqRfakuPX5LUY/BLUssMdPAn+XiS+5Ps6XctyyHJ05N8JcmdSb6V5F39rqlpSdYk+X9Jbu8d85/1u6blkOS0JN9M8j/7XctySHJ3kjuS7Eoy1e96lkOSJyW5Lsl3en+nX7Rk2x7kMf4k5wOzwH+vquf3u56mJTkTOLOqbktyBnArcGFVfbvPpTUmSYDTq2o2yTDwd8C7quobfS6tUUn+HTABPLGqXtnvepqW5G5goqpacwNXkquBr1fVlUmeAKytqgeWYtsD3eOvqq8BP+53HculqvZV1W293x8E7gQ29LeqZlXXbO/tcO9ncHszQJKNwL8Brux3LWpGkicC5wNXAVTVQ0sV+jDgwd9mSc4CXgDc0t9Kmtcb9tgF3A/cWFWDfsx/CVwGdE604AAp4EtJbk1yab+LWQbPAmaAT/SG9K5McvpSbdzgH0BJ1gGTwLur6qf9rqdpVfVwVW0GNgLnJRnYYb0krwTur6pb+13LMttSVecCLwfe1hvGHWSrgHOBj1TVC4CfAe9Zqo0b/AOmN849CXyyqj7b73qWU++/wl8F/nWfS2nSFmBrb8z7U8BLkvxtf0tqXlX9sPd6P/A54Lz+VtS4aWD6iP+9Xkf3H4IlYfAPkN6JzquAO6vqL/pdz3JIMp7kSb3fR4CXAt/pb1XNqar3VtXGqjoLuBj4clW9vs9lNSrJ6b2LFegNd/w+MNBX6lXVPwH3Jjmn13QBsGQXaQz0w9aTXAO8GFifZBp4f1Vd1d+qGrUFeANwR2/MG+B9VfXFPtbUtDOBq5OcRrcj85mqasUlji3yVOBz3X4Nq4D/UVU39LekZfEO4JO9K3r+EbhkqTY80JdzSpIezaEeSWoZg1+SWsbgl6SWMfglqWUMfklqGYNfApI83Jv5cU+Sa5OsPcn1r0zymyex/JuS/JeTr1T61Rn8UtfBqtrcm8X1IeCPF7tiktOq6o8GeRZUDRaDX3q0rwNnAyR5fW++/11JPtq7UYwks0n+Y5JbgBcl+WqSid5nr+vNHb8nyeWPbDTJJUm+l+RmujfbSX1h8EtHSLKK7kRgdyR5HvBauhOEbQYeBv6wt+jpwJ6q+hdV9XdHrP804HLgJcBm4IVJLuw9K+HP6Ab+y4BFDwtJS22gp2yQTsLIEdNcfJ3unEeXAr8F/H1vuoARulM/Q/cfgckFtvNC4KtVNQOQ5JN051XnmPZPA89t4DikEzL4pa6DvV79L/Qmvbu6qt67wPKHqurhBdpznH04P4oeFxzqkR7bTcCrkzwFIMmTk/z6Cda5Bfi9JOt75wNeB9zca39xkrHe1NmvabJw6Xjs8UuPoaq+neQ/0H3y0xAwD7wN+MFx1tmX5L3AV+j2/r9YVdcDJPkA8H+BfcBtwGnNHoG0MGfnlKSWcahHklrG4JekljH4JallDH5JahmDX5JaxuCXpJYx+CWpZf4/tANeLdS8cxgAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df.plot(kind='scatter', x='Period', y='Score')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAV40lEQVR4nO3df5BdZ33f8fcHWSQrt1T+sRBJ/DAmIEhwI5nFDfHgpjZE4FAQLjTQ4AEnwZCaBNNBidXJFGjTMUZQ2iSNg20gTuo6gJFFJgQLxvwomQmka8tYMrYggG28MvbyY0mALRbi2z/uEazk1equvGev7z3v18zOvfe595zzPXPHHx0/57nPk6pCktQdjxh0AZKk5WXwS1LHGPyS1DEGvyR1jMEvSR1z3KAL6MfJJ59cp5xyyqDLkKShctNNN329qsYPbx+K4D/llFOYnJwcdBmSNFSS3DVfu109ktQxBr8kdYzBL0kdY/BLUscY/JLUMUMxqkc6kh27pti2cy/7ZmZZu3qMLZvWs3njukGXJT2sGfwaWjt2TbF1+25m9x8AYGpmlq3bdwMY/tIC7OrR0Nq2c++PQv+g2f0H2LZz74AqkoaDwa+htW9mdlHtknoMfg2ttavHFtUuqcfg19Dasmk9YytXHNI2tnIFWzatH1BF0nBoNfiTvD7JniS3Jbm4aXtzkqkktzR/57ZZg0bX5o3ruPS801i3eowA61aPcel5p3ljVzqK1kb1JHk68GrgDOAB4IYkH27efmdVvb2tY6s7Nm9cZ9BLi9TmcM6nAZ+pqu8BJPkU8OIWjydJ6kObXT17gLOSnJRkFXAu8LjmvdcluTXJe5KcMN/GSS5MMplkcnp6usUyJalbWgv+qroduAz4GHAD8DngB8DlwJOADcC9wDuOsP0VVTVRVRPj4w9aR0CSdIxavblbVe+uqtOr6izgm8AXq+q+qjpQVT8ErqR3D0CStEzaHtXz6Obx8cB5wLVJ1sz5yIvpdQlJkpZJ23P1fDDJScB+4KKq+laSP0+yASjgTuA1LdcgSZqj1eCvqmfP03Z+m8eUJC3MX+5KUscY/JLUMQa/JHXMSC/E4upMkvRgIxv8rs4kSfMb2a4eV2eSpPmNbPC7OpMkzW9kg9/VmSRpfiMb/K7OJEnzG9mbuwdv4DqqR5IONbLBD67OJEnzGdmuHknS/Ax+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljWg3+JK9PsifJbUkubtpOTPKxJF9sHk9oswZJ0qFaC/4kTwdeDZwB/BzwgiRPBi4BbqyqJwM3Nq8lScukzSv+pwGfqarvVdUPgE8BLwZeBFzdfOZqYHOLNUiSDtNm8O8BzkpyUpJVwLnA44DHVNW9AM3jo+fbOMmFSSaTTE5PT7dYpiR1S2vBX1W3A5cBHwNuAD4H/GAR219RVRNVNTE+Pt5SlZLUPa3e3K2qd1fV6VV1FvBN4IvAfUnWADSP97dZgyTpUG2P6nl08/h44DzgWuAvgVc2H3kl8KE2a5AkHarthVg+mOQkYD9wUVV9K8lbgfcn+XXgbuClLdcgSZqj1eCvqmfP0/YN4Jw2jytJOjJ/uStJHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdYzBL0kd0/aUDZKkRdqxa4ptO/eyb2aWtavH2LJpPZs3rluy/Rv8kvQwsmPXFFu372Z2/wEApmZm2bp9N8CShb9dPZL0MLJt594fhf5Bs/sPsG3n3iU7hsEvSQ8j+2ZmF9V+LAx+SXoYWbt6bFHtx8Lgl4bMjl1TnPnWj/PESz7MmW/9ODt2TQ26JC2hLZvWM7ZyxSFtYytXsGXT+iU7hjd3pSGyHDf+NFgHv0dH9UgCFr7xZ/CPjs0b17X6fdrVIw2R5bjxp9Fn8EtDZDlu/Gn0GfzSEFmOG38afa0Gf5I3JLktyZ4k1yb5ySR/muQrSW5p/ja0WYM0SjZvXMel553GutVjBFi3eoxLzzvN/n0tSms3d5OsA34b+Jmqmk3yfuBlzdtbquq6to4tjbK2b/xp9LXd1XMcMJbkOGAVsK/l40mSjqK14K+qKeDtwN3AvcC3q+qjzdv/NcmtSd6Z5Cfm2z7JhUkmk0xOT0+3VaYkdU5rwZ/kBOBFwBOBtcDxSV4BbAWeCjwTOBH43fm2r6orqmqiqibGx8fbKlOSOqfNrp7nAF+pqumq2g9sB36hqu6tnu8D7wXOaLEGSdJh2gz+u4GfT7IqSYBzgNuTrAFo2jYDe1qsQZJ0mNZG9VTVZ5NcB9wM/ADYBVwBfCTJOBDgFuC1bdUgSXqwVufqqao3AW86rPnsNo8pSVqYv9yVpI4x+CWpYwx+SeoYg1+SOsbgl6SOOWrwJ3lKkhuT7Gle//Mkv9d+aZKkNvRzxX8lvWkW9gNU1a38eJZNSdKQ6Sf4V1XV3x3W9oM2ipEkta+f4P96kicBBZDkJfRm25QkDaF+frl7Eb2pFp6aZAr4CvCrrVYlSWrNgsGf5BHARFU9J8nxwCOq6h+XpzRJUhsW7Oqpqh8Cr2uef9fQl6Th108f/8eSvDHJ45KcePCv9cokSa3op4//15rHi+a0FXDq0pcjSWrbUYO/qp64HIVIkpbHUYM/yUrgN4GzmqZPAu9qllOUJA2Zfrp6LgdWAn/cvD6/afuNtoqSJLWnn+B/ZlX93JzXH0/yubYKkiS1q59RPQeaX+4CkORU4EB7JUmS2tTPFf8W4BNJvkxvgfQnABe0WpUkqTX9jOq5McmTgfX0gv+Oqvp+PztP8gZ69wIK2E3vH4w1wF8AJwI3A+dX1QPHVv7CduyaYtvOveybmWXt6jG2bFrP5o3r2jiUJA2NfubjvwgYq6pbq+pzwKok/76P7dYBv01vyoenAyvoTed8GfDOqnoy8C3g1x/KCRzJjl1TbN2+m6mZWQqYmpll6/bd7Ng11cbhJGlo9NPH/+qqmjn4oqq+Bby6z/0fB4wlOQ5YRW9Wz7OB65r3rwY2919u/7bt3Mvs/kNvRczuP8C2nXvbOJwkDY1+gv8RSXLwRZIVwCOPtlFVTQFvB+6mF/jfBm4CZqrq4Hz+9wDz9r0kuTDJZJLJ6enpPso81L6Z2UW1S1JX9BP8O4H3JzknydnAtcANR9soyQnAi4AnAmuB44Hnz/PRmm/7qrqiqiaqamJ8fLyPMg+1dvXYotolqSv6Cf7fBW6k9+vdi5rnv9PHds8BvlJV082vfLcDvwCsbrp+AB4L7Ft01X3Ysmk9YytXHNI2tnIFWzatb+NwkjQ0+hnV80PgT5K8B/hZYKqq+hnHfzfw80lWAbPAOcAk8AngJfRG9rwS+NAx1r6gg6N3HNUjSYdK1bw9LST5E+APq+q2JP8M+Ft6P9w6EXhjVV171J0nbwF+hd4avbvoDe1cx4+Hc+4CXnG04aETExM1OTnZ90lJkiDJTVU1cXj7Qlf8z66q1zbPLwC+UFWbk/wU8BF6ff0Lqqo3AW86rPnLwBn9lS1JWmoL9fHP/VHVc4EdAFX1tVYrkiS1aqHgn0nygiQbgTNpRvI0N2YdGiNJQ2qhrp7XAH8A/BRw8Zwr/XOAD7ddmCSpHUcM/qr6AvC8edp30hvbL0kaQv2M45ckjRCDX5I6xuCXpI45puBPcvpSFyJJWh7HesX/m0tahSRp2RxT8FdVv/PxS5IeZo46SdsRunW+Ddw1Z159SdKQ6Gex9T8GTgdupbfm7tOb5ycleW1VfbTF+iRJS6yfrp47gY3NoijPADYCe+jNt/+2FmuTJLWgn+B/alXddvBFVX2e3j8EX26vLElSW/rp6tmb5HJ6c+hDb379LyT5CWB/a5VJklrRzxX/q4C/By4G3kBvPv1X0Qv9f9VWYZKkdvRzxf884I+q6h3zvPedJa5HktSyfq74X0iva+fPk/zynIXSJUlD6KjBX1UXAD8NfAD4d8CXklzVdmGSpHb0dfVeVfuTfAQoeqtvvYjewumSpCFz1Cv+JM9L8qf0bvC+BLgKWNPHduuT3DLn7x+SXJzkzUmm5rSf+5DPQpLUt36u+F9Fbyjna6rq+/3uuKr2AhsAkqwApoDrgQuAd1bV2xddrSTpIeunj/9lVbXjYOgnOTPJ/1zkcc4BvlRVdx1LkZKkpdPX7JxJNiR5W5I7gd8H7ljkcV4GXDvn9euS3JrkPUlOOMIxL0wymWRyenp6kYeTJB1Jqmr+N5Kn0AvslwPfAN4HvLGqnrCoAySPBPYBP1tV9yV5DPB1ejeK/wuwpqp+baF9TExM1OTk5GIOK0mdl+Smqpo4vH2hPv47gE8D/7qq/r7ZyRuO4djPB26uqvsADj42+7sS+Ktj2Kck6Rgt1NXzb4CvAZ9IcmWSc+hNy7xYL2dON0+SuSOCXkxvpk9J0jI54hV/VV0PXJ/keGAzvXl6HtNM2HZ9P/PwJ1kFPBd4zZzmtyXZQK+r587D3pMkteyowzmr6rvANcA1SU4EXgpcAhw1+Kvqe8BJh7Wdf2ylSpKWwqLW3K2qb1bVu6rq7LYKkiS165gWW5ckDS+DX5I6ZqSnWN6xa4ptO/eyb2aWtavH2LJpPZs3rht0WVpCfsfS4o1s8O/YNcXW7buZ3X8AgKmZWbZu3w1gMIwIv2Pp2IxsV8+2nXt/FAgHze4/wLadewdUkZaa37F0bEY2+PfNzC6qXcPH71g6NiMb/GtXjy2qXcPH71g6NiMb/Fs2rWds5YpD2sZWrmDLpvUDqkhLze9YOjYje3P34M09R3yMLr9j6dgccVrmhxOnZZakxTvStMwj29UjSZqfwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdUxrUzYkWQ+8b07TqcB/Av6saT8FuBP4t1X1rbbq6BIXJZHUj9au+Ktqb1VtqKoNwDOA7wHXA5cAN1bVk4Ebm9d6iA4uSjI1M0vx40VJduyaGnRpkh5mlqur5xzgS1V1F/Ai4Oqm/Wpg8zLVMNJclERSv5Yr+F8GXNs8f0xV3QvQPD56vg2SXJhkMsnk9PT0MpU5vFyURFK/Wg/+JI8EXgh8YDHbVdUVVTVRVRPj4+PtFDdCXJREUr+W44r/+cDNVXVf8/q+JGsAmsf7l6GGkeeiJJL6tRzB/3J+3M0D8JfAK5vnrwQ+tAw1jLzNG9dx6XmnsW71GAHWrR7j0vNOc1SPpAdpdSGWJKuArwKnVtW3m7aTgPcDjwfuBl5aVd9caD8uxCJJi3ekhVhaXXqxqr4HnHRY2zfojfKRJA2Av9yVpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjrG4JekjjH4JaljDH5J6hiDX5I6xuCXpI4x+CWpYwx+SeoYg1+SOsbgl6SOMfglqWMMfknqGINfkjqm1eBPsjrJdUnuSHJ7kmcleXOSqSS3NH/ntlmDJOlQx7W8//8B3FBVL0nySGAVsAl4Z1W9veVjS5Lm0VrwJ3kUcBbwKoCqegB4IElbh5Qk9aHNrp5TgWngvUl2JbkqyfHNe69LcmuS9yQ5Yb6Nk1yYZDLJ5PT0dItlSlK3tBn8xwGnA5dX1Ubgu8AlwOXAk4ANwL3AO+bbuKquqKqJqpoYHx9vsUxJ6pY2g/8e4J6q+mzz+jrg9Kq6r6oOVNUPgSuBM1qsQZJ0mNaCv6q+Bnw1yfqm6Rzg80nWzPnYi4E9bdUgSXqwtkf1/BZwTTOi58vABcAfJNkAFHAn8JqWa5AkzdFq8FfVLcDEYc3nt3lMSdLC/OWuJHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSxxj8ktQxBr8kdUzbUzZIWmI7dk2xbede9s3Msnb1GFs2rWfzxnWDLktDxOCXhsiOXVNs3b6b2f0HAJiamWXr9t0Ahr/6ZlePNES27dz7o9A/aHb/Abbt3DugijSMDH5piOybmV1UuzQfg18aImtXjy2qXZqPwS8NkS2b1jO2csUhbWMrV7Bl0/ojbCE9mDd3pSFy8Aauo3r0UBj80pDZvHGdQa+HxK4eSeoYg1+SOsbgl6SOMfglqWMMfknqmFTVoGs4qiTTwF0PYRcnA19fonKGQdfOFzznLuja+cJDP+cnVNX44Y1DEfwPVZLJqpoYdB3LpWvnC55zF3TtfKG9c7arR5I6xuCXpI7pSvBfMegCllnXzhc85y7o2vlCS+fciT5+SdKPdeWKX5LUMPglqWNGOviTvCfJ/Un2DLqW5ZDkcUk+keT2JLclef2ga2pbkp9M8ndJPtec81sGXdNySLIiya4kfzXoWpZDkjuT7E5yS5LJQdezHJKsTnJdkjua/6aftWT7HuU+/iRnAd8B/qyqnj7oetqWZA2wpqpuTvJPgZuAzVX1+QGX1pokAY6vqu8kWQn8DfD6qvrMgEtrVZL/AEwAj6qqFwy6nrYluROYqKrO/IArydXAp6vqqiSPBFZV1cxS7Hukr/ir6v8A3xx0Hculqu6tqpub5/8I3A6M9MTt1fOd5uXK5m90r2aAJI8Ffhm4atC1qB1JHgWcBbwboKoeWKrQhxEP/i5LcgqwEfjsYCtpX9PtcQtwP/Cxqhr1c/7vwO8APxx0IcuogI8muSnJhYMuZhmcCkwD72269K5KcvxS7dzgH0FJ/gnwQeDiqvqHQdfTtqo6UFUbgMcCZyQZ2W69JC8A7q+qmwZdyzI7s6pOB54PXNR0446y44DTgcuraiPwXeCSpdq5wT9imn7uDwLXVNX2QdeznJr/Ff4k8LwBl9KmM4EXNn3efwGcneR/Dbak9lXVvubxfuB64IzBVtS6e4B75vzf63X0/iFYEgb/CGludL4buL2q/tug61kOScaTrG6ejwHPAe4YbFXtqaqtVfXYqjoFeBnw8ap6xYDLalWS45vBCjTdHb8EjPRIvar6GvDVJOubpnOAJRukMdKLrSe5FvhF4OQk9wBvqqp3D7aqVp0JnA/sbvq8Af5jVf31AGtq2xrg6iQr6F3IvL+qOjHEsUMeA1zfu67hOOB/V9UNgy1pWfwWcE0zoufLwAVLteORHs4pSXowu3okqWMMfknqGINfkjrG4JekjjH4JaljDH4JSHKgmflxT5IPJFm1yO2vSvIzi/j8q5L80eIrlR46g1/qma2qDc0srg8Ar+13wyQrquo3RnkWVI0Wg196sE8DPw2Q5BXNfP+3JHlX80MxknwnyX9O8lngWUk+mWSiee/lzdzxe5JcdnCnSS5I8oUkn6L3YztpIAx+aY4kx9GbCGx3kqcBv0JvgrANwAHgV5uPHg/sqap/UVV/M2f7tcBlwNnABuCZSTY3ayW8hV7gPxfou1tIWmojPWWDtAhjc6a5+DS9OY8uBJ4B/N9muoAxelM/Q+8fgQ/Os59nAp+sqmmAJNfQm1edw9rfBzylhfOQjsrgl3pmm6v6H2kmvbu6qrbO8/n/V1UH5mnPAsdwfhQ9LNjVIx3ZjcBLkjwaIMmJSZ5wlG0+C/zLJCc39wNeDnyqaf/FJCc1U2e/tM3CpYV4xS8dQVV9Psnv0Vv56RHAfuAi4K4Ftrk3yVbgE/Su/v+6qj4EkOTNwN8C9wI3AyvaPQNpfs7OKUkdY1ePJHWMwS9JHWPwS1LHGPyS1DEGvyR1jMEvSR1j8EtSx/x/Sh3ItX5C6eAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.scatter(df['Period'], df['Score'])\n",
"plt.xlabel('Period')\n",
"plt.ylabel('Avg. Score')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVK0lEQVR4nO3df4xdZ33n8fdnZpgwnjXNMBm8AZMGKLhUSGvCkC3NNkUEuguLIKlAgAoJEXXoEn51pd0CWhW62kpkFZq22k2KnYDilg0/EiKqhc2STSFQtGQ7CQEMIaCWJJ3gOoMZwHHcDDPz3T/utbGdiT125szNvef9kkZ37nPPj+/RlT9z/JxznidVhSSpPYZ6XYAkaX0Z/JLUMga/JLWMwS9JLWPwS1LLjPS6gNU47bTT6swzz+x1GZLUV26//fYfVtXU0e19EfxnnnkmMzMzvS5DkvpKkntXarerR5JaxuCXpJYx+CWpZQx+SWoZg1+SWqYv7uqRHs3ycrF3/wILi0uMjgwzOT7K0FB6XZb0uGbwq28tLxd379nHtp0zzM4fYPPEGDsunGbLpo2Gv3QMdvWob+3dv3Ao9AFm5w+wbecMe/cv9Lgy6fHN4FffWlhcOhT6B83OH2BhcalHFUn9weBX3xodGWbzxNgRbZsnxhgdGe5RRVJ/MPjVtybHR9lx4fSh8D/Yxz85PtrjyqTHt0Yv7iZ5F7ANCLCjqv4kyQe6bXPdxd5XVZ9rsg4NpqGhsGXTRm582zne1SOdgMaCP8nz6AT82cACcFOSz3Y/vqKqLm9q32qPoaEwtfGUXpch9ZUmz/ifC3y1qh4CSHIrcEGD+5MkrUKTffy7gHOTTCbZALwCeHr3s7cn+UaSjySZWGnlJJckmUkyMzc3t9IikqST0FjwV9VdwGXAzcBNwNeBReAq4FnAVmA38KFHWX97VU1X1fTU1CPmEZAknaRG7+qpqmuq6qyqOhf4EfC9qtpTVUtVtQzsoHMNQJK0ThoN/iRP6b6eAfwWcF2S0w9b5AI6XUKSpHXS9Fg9NySZBH4GXFpV80n+IslWoIB7gLc2XIMk6TCNBn9V/foKbW9qcp+SpGPzyV1JahmDX5JaxuCXpJYZ6IlYnJ1Jkh5pYIPf2ZkkaWUD29Xj7EyStLKBDX5nZ5KklQ1s8Ds7kyStbGCD39mZJGllA3tx19mZJGllAxv84OxMkrSSge3qkSStzOCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklqm0eBP8q4ku5J8K8m7u21PTnJzku91XyearEGSdKTGgj/J84BtwNnAvwBemeTZwHuAW6rq2cAt3feSpHXS5Bn/c4GvVtVDVbUI3ApcALwauLa7zLXA+Q3WIEk6SpPBvws4N8lkkg3AK4CnA5uqajdA9/UpK62c5JIkM0lm5ubmGixTktqlseCvqruAy4CbgZuArwOLJ7D+9qqarqrpqamphqqUpPZp9OJuVV1TVWdV1bnAj4DvAXuSnA7QfX2gyRokSUdq+q6ep3RfzwB+C7gO+Cvgou4iFwGfabIGSdKRmp6I5YYkk8DPgEuraj7JB4FPJnkLcB/w2oZrkCQdptHgr6pfX6FtL3Bek/uVJD06n9yVpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklrG4Jeklml6yAZJ0glaXi727l9gYXGJ0ZFhJsdHGRrKmm3f4Jekx5Hl5eLuPfvYtnOG2fkDbJ4YY8eF02zZtHHNwt+uHkl6HNm7f+FQ6APMzh9g284Z9u5fWLN9GPyS9DiysLh0KPQPmp0/wMLi0prtw+CXpMeR0ZFhNk+MHdG2eWKM0ZHhNduHwS/1meXlYm7fw9w//xBz+x5mebl6XZLW0OT4KDsunD4U/gf7+CfHR9dsH17clfrIelz4U28NDYUtmzZy49vOaeyuHs/4pT6yHhf+1HtDQ2Fq4yk8bWIDUxtPWfM/6ga/1EfW48KfBp/BL/WR9bjwp8Fn8Et9ZD0u/GnwNXpxN8nvAb8DFPBN4GLgz4HfAH7SXezNVXVnk3VIg2I9Lvxp8DUW/EmeBrwT+JWqOpDkk8Drux//h6q6vql9S4Ps4IU/6WQ13dUzAowlGQE2AD9oeH+SpONoLPir6n7gcuA+YDfwk6r6fPfjP0ryjSRXJFnx1CXJJUlmkszMzc01VaYktU5jwZ9kAng18AzgqcB4kjcC7wV+GXgh8GTg91dav6q2V9V0VU1PTU01VaYktU6TXT0vBb5fVXNV9TPg08CvVdXu6ngY+ChwdoM1SJKO0mTw3wf8apINSQKcB9yV5HSAbtv5wK4Ga5AkHaWxu3qq6rYk1wN3AIvA14DtwP9KMgUEuBP43aZqkCQ9UqP38VfV+4H3H9X8kib3KUk6Np/claSWMfglqWUMfklqGYNfklrG4JekljH4JallDH5JahmDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklrG4JekljH4JallVh38Sf5Vkou7v08leUZzZUmSmrKq4E/yfuD3gfd2m54A/GVTRUmSmrPaM/4LgFcB+wGq6gfAxuOtlOT3knwrya4k1yV5YpJnJLktyfeSfCLJ6MmXf2zLy8Xcvoe5f/4h5vY9zPJyNbUrSeobqw3+haoqoACSjB9vhSRPA94JTFfV84Bh4PXAZcAVVfVsYB54y8kUfjzLy8Xde/ZxwZVf4ZzLvsAFV36Fu/fsM/wltd5qg/+TST4MnJpkG/B/gB2rWG8EGEsyAmwAdgMvAa7vfn4tcP6Jlbw6e/cvsG3nDLPzBwCYnT/Atp0z7N2/0MTuJKlvjKxmoaq6PMnLgJ8CW4A/qKqbj7PO/UkuB+4DDgCfB24HflxVi93FZoGnrbR+kkuASwDOOOOM1ZR5hIXFpUOhf9Ds/AEWFpdOeFuSNEiOG/xJhoH/XVUvBY4Z9ketNwG8GngG8GPgU8DLV1h0xb6XqtoObAeYnp4+4f6Z0ZFhNk+MHRH+myfGGB0ZPtFNSdJAOW5XT1UtAQ8l+YUT3PZLge9X1VxV/Qz4NPBrdLqLDv7B2Qz84AS3uyqT46PsuHCazRNjnR1NjLHjwmkmxxu7lixJfWFVXT3APwHfTHIz3Tt7AKrqncdY5z7gV5NsoNPVcx4wA3wBeA3wceAi4DMnUfdxDQ2FLZs2cuPbzmFhcYnRkWEmx0cZGkoTu5OkvrHa4P9s92fVquq2JNcDdwCLwNfodN18Fvh4kv/SbbvmRLZ7IoaGwtTGU5ravCT1pXTu0lzFgp377Z/TfXt3t/tmXUxPT9fMzMx67U6SBkKS26tq+uj2VZ3xJ3kxnVsv7wECPD3JRVX1pbUsUpLUvNV29XwI+M2quhsgyXOA64AXNFWYJKkZq32A6wkHQx+gqr5LZ7weSVKfWe0Z/0ySa4C/6L7/bToPY0mS+sxqg//fAZfSGXsnwJeAK5sqSpLUnNUG/wjwp1X1x3DoaV7vk5SkPrTaPv5bgLHD3o/RGahNktRnVhv8T6yqBw++6f6+oZmSJElNWm3w709y1sE3SabpDMMgSeozq+3jfzfwqSQ/oDOa5lOB1zVWlSSpMcc840/ywiT/vKr+Fvhl4BN0xt25Cfj+OtQnSVpjx+vq+TBwcMqqFwHvA/47nSkTtzdYlySpIcfr6hmuqh91f38dsL2qbgBuSHJns6VJkppwvDP+4cMmTTkP+OvDPlvt9QFJ0uPI8cL7OuDWJD+kcxfPlwGS/BLwk4ZrkyQ14JjBX1V/lOQW4HTg8/XzwfuHgHc0XZwkae0dt7umqr66Qtt3mylHktS01T7AJUkaEAa/JLWMwS9JLdPYLZlJttB50vegZwJ/AJwKbAPmuu3vq6rPNVWHJOlIjQV/d6rGrXBo/P77gRuBi4ErqurypvYtSXp069XVcx7wd1V17zrtT5L0KNYr+F9P52Gwg96e5BtJPpJkYqUVklySZCbJzNzc3EqLSJJOQuPBn2QUeBXwqW7TVcCz6HQD7QY+tNJ6VbW9qqaranpqaqrpMiWpNdbjjP/lwB1VtQegqvZU1VJVLQM7gLPXoQZJUtd6BP8bOKybJ8nph312AbBrHWqQJHU1OsJmkg3Ay4C3Htb8X5NspTOT1z1HfSZJalijwV9VDwGTR7W9qcl9SpKOzSd3JallDH5JahmDX5JaZqCnT1xeLvbuX2BhcYnRkWEmx0cZGkqvy9Ia8juWTtzABv/ycnH3nn1s2znD7PwBNk+MsePCabZs2mgwDAi/Y+nkDGxXz979C4cCAWB2/gDbds6wd/9CjyvTWvE7lk7OwAb/wuLSoUA4aHb+AAuLSz2qSGvN71g6OQMb/KMjw2yeGDuibfPEGKMjwz2qSGvN71g6OQMb/JPjo+y4cPpQMBzs/50cH+1xZVorfsfSyUlV9bqG45qenq6ZmZkTXs87Pgaf37H06JLcXlXTR7cP7F09AENDYWrjKb0uQw3yO5ZO3MB29UiSVmbwS1LLGPyS1DIGvyS1jMEvSS1j8EtSyxj8ktQyBr8ktYzBL0kt01jwJ9mS5M7Dfn6a5N1Jnpzk5iTf675ONFVD2ywvF3P7Hub++YeY2/cwy8uP/+E4JK2/xoK/qu6uqq1VtRV4AfAQcCPwHuCWqno2cEv3vR6jg5OSXHDlVzjnsi9wwZVf4e49+wx/SY+wXl095wF/V1X3Aq8Gru22Xwucv041DDQnJZG0WusV/K8Hruv+vqmqdgN0X5+y0gpJLkkyk2Rmbm5uncrsX05KImm1Gg/+JKPAq4BPnch6VbW9qqaranpqaqqZ4gaIk5JIWq31OON/OXBHVe3pvt+T5HSA7usD61DDwHNSEkmrtR7j8b+Bn3fzAPwVcBHwwe7rZ9ahhoE3NBS2bNrIjW87x0lJJB1To8GfZAPwMuCthzV/EPhkkrcA9wGvbbKGNnFSEkmr0WjwV9VDwORRbXvp3OUjSeoBn9yVpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklrG4JekljH4JallDH5JahmDX5JaxuCXpJYx+CWpZQx+SWoZg1+SWsbgl6SWMfglqWUMfklqGYNfklqm0eBPcmqS65N8J8ldSV6U5ANJ7k9yZ/fnFU3WIEk60kjD2/9T4Kaqek2SUWAD8K+BK6rq8ob3LUlaQWPBn+RJwLnAmwGqagFYSNLULiVJq9BkV88zgTngo0m+luTqJOPdz96e5BtJPpJkYqWVk1ySZCbJzNzcXINlSlK7NBn8I8BZwFVV9XxgP/Ae4CrgWcBWYDfwoZVWrqrtVTVdVdNTU1MNlilJ7dJk8M8Cs1V1W/f99cBZVbWnqpaqahnYAZzdYA2SpKM0FvxV9Y/APyTZ0m06D/h2ktMPW+wCYFdTNUiSHqnpu3reAXyse0fP3wMXA3+WZCtQwD3AWxuuQZJ0mEaDv6ruBKaPan5Tk/uUJB2bT+5KUssY/JLUMga/JLWMwS9JLWPwS1LLGPyS1DIGvyS1jMEvSS1j8EtSyzQ9ZIOkNba8XOzdv8DC4hKjI8NMjo8yNOQ8F1o9g1/qI8vLxd179rFt5wyz8wfYPDHGjgun2bJpo+GvVbOrR+oje/cvHAp9gNn5A2zbOcPe/Qs9rkz9xOCX+sjC4tKh0D9odv4AC4tLPapI/cjgl/rI6MgwmyfGjmjbPDHG6MhwjypSPzL4pT4yOT7KjgunD4X/wT7+yfHRHlemfuLFXamPDA2FLZs2cuPbzvGuHp00g1/qM0NDYWrjKb0uQ33Mrh5JahmDX5JaxuCXpJYx+CWpZQx+SWqZVFWvaziuJHPAvY9hE6cBP1yjcvpB244XPOY2aNvxwmM/5l+sqqmjG/si+B+rJDNVNd3rOtZL244XPOY2aNvxQnPHbFePJLWMwS9JLdOW4N/e6wLWWduOFzzmNmjb8UJDx9yKPn5J0s+15YxfktRl8EtSywx08Cf5SJIHkuzqdS3rIcnTk3whyV1JvpXkXb2uqWlJnpjk/yX5eveY/7DXNa2HJMNJvpbkf/a6lvWQ5J4k30xyZ5KZXtfTtCSnJrk+yXe6/55ftKbbH+Q+/iTnAg8CO6vqeb2up2lJTgdOr6o7kmwEbgfOr6pv97i0xiQJMF5VDyZ5AvA3wLuq6qs9Lq1RSf49MA08qape2et6mpbkHmC6qlrxAFeSa4EvV9XVSUaBDVX147Xa/kCf8VfVl4Af9bqO9VJVu6vqju7v+4C7gKf1tqpmVceD3bdP6P4M7tkMkGQz8G+Bq3tdi9ZekicB5wLXAFTVwlqGPgx48LdZkjOB5wO39baS5nW7Pe4EHgBurqpBP+Y/Af4jsNzrQtZRAZ9PcnuSS3pdTMOeCcwBH+12512dZHwtd2DwD6Ak/wy4AXh3Vf201/U0raqWqmorsBk4O8nAdusleSXwQFXd3uta1tk5VXUW8HLg0m437qAaAc4Crqqq5wP7gfes5Q4M/gHT7ee+AfhYVX261/Wsp+5/h78I/Jsel9Kkc4BXdfu8Pw68JMlf9rak5lXVD7qvDwA3Amf3tqJGzQKzh/3P9Xo6fwjWjME/QLoXOq8B7qqqP+51PeshyVSSU7u/jwEvBb7T26qaU1XvrarNVXUm8Hrgr6vqjT0uq1FJxrs3K9Dt8vhNYGDv1KuqfwT+IcmWbtN5wJreoDHQk60nuQ54MXBaklng/VV1TW+ratQ5wJuAb3b7vAHeV1Wf62FNTTsduDbJMJ0TmU9WVStucWyRTcCNnfMaRoD/UVU39bakxr0D+Fj3jp6/By5ey40P9O2ckqRHsqtHklrG4JekljH4JallDH5JahmDX5JaxuCXgCRL3ZEfdyX5VJINJ7j+1Ul+5QSWf3OS/3bilUqPncEvdRyoqq3dUVwXgN9d7YpJhqvqdwZ5FFQNFoNfeqQvA78EkOSN3fH+70zy4e6DYiR5MMl/TnIb8KIkX0wy3f3sDd2x43cluezgRpNcnOS7SW6l87Cd1BMGv3SYJCN0BgL7ZpLnAq+jM0DYVmAJ+O3uouPArqr6l1X1N4et/1TgMuAlwFbghUnO786V8Id0Av9lwKq7haS1NtBDNkgnYOywYS6+TGfMo0uAFwB/2x0uYIzO0M/Q+SNwwwrbeSHwxaqaA0jyMTpjq3NU+yeA5zRwHNJxGfxSx4HuWf0h3UHvrq2q966w/D9V1dIK7TnGPhwfRY8LdvVIj+4W4DVJngKQ5MlJfvE469wG/EaS07rXA94A3Nptf3GSye7Q2a9tsnDpWDzjlx5FVX07yX+iM/PTEPAz4FLg3mOsszvJe4Ev0Dn7/1xVfQYgyQeA/wvsBu4Ahps9Amlljs4pSS1jV48ktYzBL0ktY/BLUssY/JLUMga/JLWMwS9JLWPwS1LL/H/xRJJ1GeYxNQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.scatterplot(df['Period'], df['Score'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}